
Conclusion: A coupled heat transfer, solid mechanics and phase 
transformation model has been developed to simulate the high heat 
input welding of marine steel. Simulated thermal results have been 
validated against experimental observations. It is found that 
microstructure evolution during welding can be optimized by varying 
the welding source movement path and the cooling rate of sliding 
copper shoe to improve the properties of HAZ.
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Introduction: The high heat input welding improves the 
efficiency, but the toughness of heat-affected zone (HAZ) can be 
reduced significantly because of thermal-mechanical evolution in 
HAZ during welding.
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Figure 1. Thermal distribution and phase evolution during the welding 
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Figure 2. The coupling between thermal, stress and phase evoluation

Methodology: A coupled heat transfer, solid mechanics and 
phase transformation model has been developed to simulate the 
high heat input electro-gas welding (EGW) process of marine steel. 
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 - Density pC k- Heat capacity - Thermal conductivity

P H
r- Arc power - Radius of heating source v- Welding speed

Result: The simulated thermal profile is validated by comparing 
experimental and simulated fusion lines in welding joints (Figure 3).

 (a) Real welded joint          (b) Simulated welded joint             (c) Simulated cloud picture
Figure 3. Comparison of actual and simulated welded joints 

Temperature evolution against time for a selected point is shown in 
Figure 4. The effect of cooling rate of water-cooled copper slides on 
temperature evolution can be analysed and are shown in Figure 4(b).

Calculated phase fraction of HAZ evolution with different thermal cycle 
are shown in Figure 5. With the increase of cooling rate, the fraction of 
bainite and martensite increases while the fraction of pearlite and 
ferrite decreases.

(a) Cooling rate 1 (b) Cooling rate 3
Figure 5. Phase fraction smulation of HAZ with different cooling rate 

Thermal cycle

Latent heat

Phase field:

Bainite volum fraction is computed by JMAK-equation
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Martensite volum fraction is computed by KM-equation
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Ferrite transformation rate is computed by LD-equation
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ξs - Ratio of consumption phase ξd - The ratio of target phase 

Ms - Martensite start temperature

 - Constant K t  - Transformation time

T - Temperature
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(a) Thermal cycle of selected point (b) Thermal cycle with three cooling rates
Figure 4 Thermal  evoluation during welding process


